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Classical and quantum periodically driven scattering in one dimension
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Irregular scattering at harmonically driven one-dimensional potential wells is studied both on the classical
and the quantum level. We show that an ac-driven single square well, and a smooth well with oscillating
bottom, are sufficient to generate chaotic scattering. For a square well with oscillating bottom, we introduce the
concept of pseudointegrable scattering. The quantum dynamics of these models is treated using Floquet scat-
tering theory, which is exact for arbitrary amplitude and frequency of the driving. In the deep quantum regime,
scattering is dominated by multiphoton exchanges with the driving field, leading to complex resonance struc-
tures in transmission and reflection. For strong and fast driving, the ac-driven square well develops an effective
double-well potential that introduces coherent tunneling in the scattering. We identify signatures of classical
chaotic scattering in a phase-space representation of the quantum dynamics.
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I. INTRODUCTION

A periodic driving represents the essence of most of
experimental methods for supplying energy to a microsco
system in a coherent, easily controllable manner: For
ample, in quantum chemistry, molecules are steered thro
a predetermined reaction path by correspondingly desig
laser pulses@1,2#. Similarly, in mesoscopic physics, an ele
tronic device can be irradiated directly in the microwave-
infrared range@3,4#. Control mechanisms closer to the re
ertoire of electronics are the application of an oscillati
potential via a back gate, or simply of an ac voltage betw
the terminals of the device.

Both the chemical and the mesoscopic applications m
tioned have in common that they are most adequately
scribed in the framework of scattering theory, with a sp
tially localized, but periodically time-dependent scatteri
potential. For a molecule passing through a laser beam o
electron passing through a device with an oscillating pot
tial, this is obvious. An ac voltage, while nonlocal in th
laboratory frame, can in fact be reduced to the same sch
by a transformation originally developped to treat atoms
mersed in a spatially homogeneous radiation field@5,6#.

In atomic physics and in quantum chemistry, it is stand
technology to drive the intensity of the radiation to valu
where strongly nonlinear quantum effects, such as abo
threshold ionization, multiphoton excitation, and hig
harmonic generation, have to be taken into account@7#, and
the corresponding classical dynamics is partially or tota
chaotic. This is usually not the case in mesoscopic phys
where a periodic forcing is widespread@8# but predominantly
remains within the regime of linear response, such as m
experiments on photon-assisted tunneling@3# or ac conduc-
tance through quantum dots@4#. Accordingly, the theoretica
treatment typically resorts to perturbative or related, such
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low frequency, approximations@8#. They are clearly not suit-
able to access the nonlinear regime where a nontrivial c
sical dynamics can be expected to affect the quantu
mechanical behavior.

An adequate framework to treat quantum systems, sub
to periodic driving without any restriction of amplitude o
frequency, is the Floquet formalism@9–11#. While it is more
well known in the context of bound systems, it can in fact
generalized to scattering problems@9#. The enormous possi
bilities a time-dependent scattering theory, based on the
quet approach, offers, have barely been exploited. To
sure, there exist a few recent works where it is employed
elucidate the quantum signatures of classical chaotic sca
ing @12,13#. There, however, the driving is chosen in th
form of kicks. This facilitates numerical studies but is f
from experimental reality where the driving almost excl
sively is harmonic. Quantum scattering at harmonically
cillating potentials, in turn, has been studied in the Floq
formalism @14# but without considering the possibility of ir
regular scattering on the classical level and its quantu
mechanical consequences. A purely classical study of s
tering at harmonically driven wells and barriers, on the oth
hand, has recently been presented in Ref.@15#. A semiclas-
sical treatment of driven systems with emphasis on tunne
can be found in Ref.@16#.

In this work we study complex scattering at harmonica
oscillating potentials, both classically and quantum mecha
cally. We intend to demonstrate that also in mesosco
physics, a periodic driving allows one to see quantum irre
lar scattering and other nonlinear phenomena in a surp
ingly simple, one-dimensional setting. We devise a few m
els that in their spatial structure are inspired by typic
layered semiconductor nanostructures, single square
smooth wells in the dimension across the layers, and wh
have a harmonic driving in common. The driving can
localized in the scattering region or can be spatially hom
geneous like an ac voltage. For these systems, we pres
detailed analysis of the classical dynamics to show that t
indeed support irregular or at least pseudointegrable sca
ing, and exhibit a rich scenario of mixed dynamics in t
transition regime.

This implies that also on the quantum level, numeric
©2001 The American Physical Society18-1
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work is indispensable. Besides the general advantages o
Floquet approach also for numerics, the (t,t8) method
@17,18# provides a well-suited tool for the treatment of
harmonic driving. We are able to evaluate, in particul
transmission and reflection probabilities for individual Fl
quet channels. In the deep quantum regime, we thus see
linear effects in the form of complicated structures in tra
mission and reflection. They can be explained in terms
multiphoton excitations in the scattering region. Towards
semiclassical regime, we identify signatures of classical
regular scattering in quantum phase-space distributions.

We present our models in Sec. II. Section III provid
details of the classical scattering in the three systems stud
The corresponding quantum dynamics is discussed, aft
brief resume of classical and quantum time-dependent s
tering theory, in Sec. IV. A synopsis of the various regim
covered is given in Sec. V. A selection of more technic
nevertheless important material is contained in Append
A to E.

II. MODELS

We focus on two different representative classes of o
dimensional time-periodic scattering systems: Systems
which the entire scattering potential is restricted to a comp
interaction region, and systems in which the time-depend
part of the potential is modeled after an ac driving.

A. Systems with local driving

If the particle experiences a non-negligible force only in
finite region of space, the concepts of scattering theory
be applied directly. On the quantum-mechanical level,
Floquet formalism allows for generalizing the Lippman
Schwinger equations to the case of time-periodic potent
@12,19#. For one-dimensional systems, in particular, tra
mission and reflection probabilities can be defined indep
dently of the phase of the driving, see Sec. IV A.

We further restrict consideration to potentials where sp
and time dependence factorize,

V~x,t !5 f ~x!@V01V1g~ t !# ~1!

and the time dependence is harmonic,

g~ t !5g~ t1T!5cosvt, v52p/T. ~2!

The function f (x) defines the shape of the vertically osc
lating potential. The parametersV0 and V1 denote, respec
tively, the depth~or height! of the time-independent part o
the potential and the amplitude of the oscillation. A ver
cally oscillating potential provides a simple model of a c
pacitive coupling of an ac gate voltage to the tim
independent potentialV0f (x). The factorization of the
potential enables considerable computational simplificatio
Specifically, we shall choosef (x) as a square well

f ~x!5u~L2uxu!, ~3!

or a smooth well
04621
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f ~x!5
1

@cosh~x/L !#2
. ~4!

B. Systems with ac driving

As a model for transport experiments performed using
voltages, we consider systems in which the particle see
additional alternating field while moving in an otherwis
static scattering potential. For the sake of simplicity we
sume the driving field to be spatially homogenous. Choos
a gauge in which all forces are gradients of a scalar poten
the total time-periodic potential is given by

V~x,t !5V0f ~x!2qExcosvt. ~5!

Again, f (x) defines the shape of the static potential, w
strengthV0. The charge of the particle isq, andE denotes the
amplitude of the ac field.

For the above potential, asymptotically free states can
be defined in an obvious manner and scattering theory ap
ently does not apply directly. This difficulty is removed b
the Kramers-Henneberger transformation@5#. Consider a
charged particle moving in the potential~5!. Outside the in-
teraction region, the influence of the static potentialV0f (x),
which is assumed to decay sufficiently fast, can be neglec
The particle only sees the ac field. Hence, the velocity of
particle is given by a constant plus a harmonically oscillat
term. In a reference frame performing the same lateral os
lation with respect to the laboratory frame, the partic
moves with a constant velocity at large distances from
scatterer, i.e., is asymptotically free. The originally sta
component of the potential, however, now appears to os
late laterally.

Another alternative is to use the gauge invariance of e
tromagnetism in order to replace the scalar potential;x in
Eq. ~5! by a time-periodic, but spatially homogeneous vec
potential. To summarize, there are three differe
representations—gauges—providing equivalent descript
of the same dynamical system. The only gauge that allo
for asymptotically free states is the one that renders the s
scattering potential laterally oscillating. Its advantage is
direct applicability of scattering theory. The disadvanta
lies in the more complicated dependence on time and p
tion of the potential which in general prevents a factorizat
as in Eq.~1!. The three gauges apply to the classical as w
as to the quantum-mechanical description. Further details
found in Appendix A.

In the representation of a laterally oscillating potenti
Eq. ~5! transforms to

V~x,t !5V0f „x2l cos~vt !…, l5qE/v2m. ~6!

As a specific static potential shapef (x), we shall again con-
sider the square well~3!.

All the potentials mentioned in this section, except E
~6!, are consistent with the general form

V~x,t !5V0f 0~x!1V1f 1~x!g~ t !, ~7!
8-2
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CLASSICAL AND QUANTUM PERIODICALLY DRIVEN . . . PHYSICAL REVIEW E64 046218
with the spatial shapesf 0,1 depending onx only via x/L, and
g depending on time only viavt. Scaling all variables ac
cordingly,

x̃5
x

L
, p̃5

p

Lmv
, t̃ 5vt, Ẽ5

E

mv2L2
,

Ṽ0,15
V0,1

mv2L2
, ~8!

leads to the dimensionless Hamiltonian

H̃~ x̃,p̃; t̃ !5
p̃2

2
1Ṽ0f 0~ x̃!1Ṽ1f 1~ x̃!g~ t̃ ! ~9!

with only two parameters,Ṽ0 and Ṽ1, instead of five.
We shall mainly consider models~choosingṼ0 and Ṽ1

accordingly! with potentials that remain attractive over th
entire period of the driving. While oscillatingbarriers are of
high general interest for mesoscopic physics, a single ba
does not allow for a complex classical dynamics@20#. There-
fore, in the conclusions we briefly address the case o
double barrier. See also Ref.@15# for chaotic scattering a
chainsof oscillating barriers.

III. CLASSICAL DYNAMICS

In the Hamiltonian formulation, time-dependent syste
in one dimension are described by twononautonomousequa-
tions of motion. Alternatively, introducing a new ficticiou
variablez5at and the energyE as its canonically conjugat
momentum@21,22#, they transform into fourautonomous
equations of motion. Thus the time dependence amoun
one additional degree of freedom~or at least one-half, ifE is
not considered an extra freedom!, fulfilling a necessary con-
dition for the occurrence of chaotic motion.

Classical chaotic scattering can be identified on basis
three principal diagnostics@23#: phase-space portraits, de
flection functions, and dwell-time distributions. Below, w
give a brief description of these criteria for the case at ha
one-dimensional time-periodic systems.

Stroboscopic phase-space portraitsare taken at every in
teger multiple of the period of the driving. They correspo
to defining thet50 modT hyperplanes as Poincare´ surfaces
of section in the extended phase space.

Of the variousdeflection functionsthat can be defined fo
one-dimensional time-periodic systems, the outgoing m
mentumpout as a function of the incoming momentumpin
proved the most suitable combination for an analysis of
scattering process. It can be shown that selfsimilarity in
deflection function implies topological chaos in the dynam
cal flow @24#. We therefore base our classification of scatt
ing on the presence or absence of selfsimilar regions
pout(pin) @25#.

Dwell-time distributionsare calculated averaging over
small interval around a given incoming momentum, and o
all phases of the driving. Also the nature of the decay of
dwell-time distribution for long times reflects the type
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motion within the interaction region. As a crude distinctio
an exponential decay indicates a hyperbolic dynam
@26,27#, while an algebraic behavior reflects integrable m
tion. Mixed systems typically show a crossover from exp
nential to algebraic decay@28#. Pseudointegrable system
also exhibit a power-law decay of their dwell-time distrib
tion, but for different reasons and with different exponen
~see Appendix B!.

In the following we apply the tools introduced above
the models described in Sec. II: scattering at a vertically a
laterally oscillating square well and at a smooth well.

A. Pseudointegrable scattering in the vertically oscillating
square well

Scaled as in Eq.~8!, the vertically oscillating square wel
takes the form

Ṽ~ x̃, t̃ !5~Ṽ01Ṽ1 cost̃ !u~12ux̃u!, ~10!

with Ṽ0,0 andṼ1,uṼ0u. Despite the driving, the flat bot
tom of the potential does not allow for a change of the
netic energy within the well. Therefore, changes of the m
mentum can occur only when a trajectory passes one of
steps of the potential atx̃561, and then are discontinuou
themselves. This enables us to formulate the entire scatte
dynamics as a discrete map, relating successive pass
across or reflections off the steps@15#: The total energy in-
side the well can differ by at most 2Ṽ1, up or down, with
respect to its value upon entering the well. This may prev
an exit, resulting in specular reflection off either one of t
potential steps. It can occur for an arbitrary number of tim
until a potential step is overcome again and the traject
leaves without returning. Note, however, that the times
touching or crossing the steps have no simple relation to
periodT of the driving. Therefore, this map has nothing to
with the Poincare´ surfaces of section attn5nT, underlying
the stroboscopic phase-space plots.

Trajectories starting inside the well with an initial kinet
energyp̃2/2,uṼ0u2Ṽ1 can never acquire a positive total e
ergy. They are trapped and inaccessible from outside.
same is true of trajectories with a higher kinetic energy if t
time of flight from one wall of the well to the other is a
integer multiple of the period of the potential,

p̃l5
1

lp
, ~11!

and the initial phaset̃ 0 fulfills p̃n
2/21(Ṽ01Ṽ1cost̃0),0

~Fig. 1!. In these cases, the dynamics is identical to t
inside a square well with infinitely high walls, and therefo
integrable. By contrast, trajectories starting from one of
walls within the same time intervals, but with a momentu
slightly different from those given in the resonance conditi
~11!, will only stay a finite, if long, time in the interaction
region. Therefore, this part of phase space is accessibl
scattering trajectories. A phase-space portrait is presente
Fig. 2.
8-3
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This dynamics is locally integrable, i.e., restricted to
torus. Along a manifold of measure zero, however, the to
is coupled to a different type of motion that itself is int
grable again: asymptotically free scattering trajectori
Were this second part of phase space another~finite! torus,
we dealt with bounded pseudointegrable motion@29#. This
justifies to speak ofpseudointegrable scattering. More pre-
cisely, unfolding configuration space inside the well along
walls and considering time as a second spatial coordinate~cf.
Fig. 3!, the system can be related to the unfolded barrie
graveyard billiard@30#, a prototype of pseudointegrable m
tion.

Incoming trajectories asymptotically approaching t
trapped trajectories just described form borders, each s
rating two topologically different types of scattering traje
tories. In the deflection function~Fig. 4!, these borders are
visible as discontinuities. As can be seen from the resona
condition ~11!, they do not form a fractal set. This gives
additional evidence that scattering at the vertically oscillat
square well~10! is not chaotic. We show in Appendix B tha

FIG. 1. Schematic space-time representation of the first (l 51)
resonant momentum, Eq.~11!, in the vertically oscillating square
well Eq. ~10!. The zigzag band consists of bound trajectories
flected between the walls of the well during closed windows of
potential~light sections of the horizontal lines representing the p
tential steps!; a second band related to this one by parity has b
omitted for clarity. The dark gray band signifies the complement
set of initial conditions, with the same resonant momentum as
trapped trajectories, but entering during an open window of
potential ~bold sections of the horizontal lines! and leaving com-
pletely through the next one.

FIG. 2. Stroboscopic phase-space plot for a vertically oscillat

square well, Eq.~10!, with Ṽ0521024 and Ṽ150.99931024.
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the long-time asymptote of the dwell-time distribution is a
gebraic, with an exponent23 ~Fig. 5!, owing to the reso-
nance mechanism explained above. It is typical for a dyna
ics dominated by parabolic points@31# and has been
observed in a wide variety of systems ranging from a driv
squarebarrier enclosed in a potential box@32# and noncha-
otic billiard chains@33# through hydrodynamical flow@34#.

This phenomenon becomes more pronounced if the t
windows during which nearly trapped trajectories can esc
~vertical shaded rectangles in Fig. 3! are short compared to
the period of the driving. That is the case, in turn, if th
bottom of the barrier, at its highest position during ea
cycle, almost reaches the top of the well, i.e., ifuṼ0u2Ṽ1

-
e
-
n
y
e
e

g

FIG. 3. Pseudointegrable scattering at the vertically oscillat
square well in a schematic space-time representation. The s
inside the well, with time as the horizontal coordinate, is depic
as the white horizontal rectangle. Unfolding this ‘‘billiard’’ alon
its walls ~full lines! results in an infinite array of borderlines~dot-
ted!. The vertical light-shaded rectangles correspond to window
time during which, for some arbitrary fixed kinetic energy insi
the well, trajectories can escape. Where these time windows in
sect the borderlines of the well~short bold lines!, temporarily
trapped motion within the well is connected to free scattering
jectories. A single replica of an equivalent barrier billiard is ind
cated by the dashed rectangle.

FIG. 4. Outgoing vs incoming momentum for a vertically osc

lating square well, Eq.~10!, with Ṽ0521024 and Ṽ150.999
31024.
8-4
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CLASSICAL AND QUANTUM PERIODICALLY DRIVEN . . . PHYSICAL REVIEW E64 046218
!uṼ0u, Ṽ1. All the data shown in the context of the vertical
oscillating square well belong to this regime. The dwell-tim
distributions in Fig. 5, in particular, demonstrate that t
agreement with the predicted power law improves upon
proaching this limit. The absolute values ofṼ0,1, on the
other hand, have a minor influence.

Scattering at the vertically oscillating square well is ch
acterized by the absence, due to the trivial dynamics ins
the well, of any mechanism that could amplify small diffe
ences in the incoming conditions to arbitrary deviations
the outgoing conditions. This is different in the followin
example.

B. Weakly chaotic dynamics in the vertically oscillating
smooth well

After scaling as in Eq.~8!, the vertically oscillating well
with the smooth static shape~4! takes the form

FIG. 5. Dwell-time distributionsP( t̃ ) ~not normalized! for a

vertically oscillating square well, Eq.~10!, with Ṽ05210 andṼ1

59 ~open squares!, Ṽ159.5 ~stars!, Ṽ159.9 ~diagonal crosses!,

Ṽ159.99 ~vertical crosses!. The straight lines correspond to alg

braic decayP( t̃ ); t̃ 23.
04621
-

-
e

Ṽ~ x̃, t̃ !5
~Ṽ01Ṽ1 cost̃ !

~coshx̃!2
. ~12!

Due to the continuous nature of the potential, trajector
have to be calculated here by numerical integration of
equations of motion. Stroboscopic phase-space portraits
again defined by Poincare´ surfaces of section attn5nT.

The nature of scattering in this case is most easily und
stood by considering first the motion inside the well. Due
its shape it forms an anharmonic oscillator. Switching on
driving with a small amplitudeṼ1!uṼ0u leads to resonance
whenever the period of undisturbed oscillation inside
well coincides with an integer multiple of the driving perio
Each of them is characterized by a chain of alternating el
tic and hyperbolic periodic points, embedded in a chao
layer. Since the potential is not binding, however, there m
be an uppermost resonance, coupled to asymptotically
trajectories. The generic global structure of phase spac
this system therefore consists of three parts: Regular sca
ing trajectories at high energies, an intermediate region
chaotic scattering at low but positive energies, and a mi
Kol’mogorov-Arnol’d-Moser~KAM !-type region of bound
motion inside the well.

This generic structure is exemplified by the phase-sp
portraits in Fig. 6. Panel~a! shows the scattering part o
phase space, with regular trajectories at highu p̃u, and chaotic
motion reaching into the asymptotic regions for small m
menta. The white area of bound motion inaccessible fr
outside is filled in panel~b!. It exhibits the typical KAM
structure of interspersed tori and chaotic layers.

The conclusion that scattering at the potential~12! is cha-
otic already for small driving amplitudes is confirmed by t
deflection functions presented in Fig. 7. Two success
magnifications clearly demonstrate their self-similarity.

Figures 8 and 9 are devoted to the extreme case tha
well disappears once per period of the driving,Ṽ15uṼ0u.
Foreseeably, the relative size of the region of chaotic s
tering has increased dramatically@Fig. 8~a!#. Still, a small
FIG. 6. Stroboscopic phase-space plots for a vertically oscillating smooth well, Eq.~12!, with Ṽ0524/9 andṼ151022uṼ0u. Panel~a!

shows scattering trajectories, coming in from the left, panel~b! mostly bound trajectories starting atx̃050 with phaset̃ 05p/2.
8-5
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MICHAEL HENSELER, THOMAS DITTRICH, AND KLAUS RICHTER PHYSICAL REVIEW E64 046218
tom of the well. Numerical evidence demonstrates that
central island persists even for values ofṼ15uṼ0u orders of
magnitude higher than the ones underlying the data sho
The deflection function@Fig. 8~b!# is less regular in the
small-scale details than in the case of weak driving, Fig
but evidently remains self-similar. The dwell-time distrib
tion, Fig. 9, decays algebraically as expected for a sys
with mixed, KAM-type dynamics. However, it exhibits
very well-defined crossover, att̃'2.531019, from a slow
decay; t̃ 20.32 to a faster decay; t̃ 21.21. While it is clear
that, in order that the distribution be normalizable, the sl
decay; t̃ 20.32 cannot persist to arbitrarily long times, th
mechanism underlying this crossover remains open.

C. Mixed „regular and chaotic… scattering in the laterally
oscillating square well

In the case of the laterally oscillating square well, as
emerges by a Kramers-Henneberger transformation from
ac-driven well, the two respective strength parameters of

FIG. 7. Outgoing vs incoming momentum for a vertically osc

lating smooth well, Eq.~12!, with Ṽ0524/9 andṼ151022uṼ0u.
Lower panels are successive magnifications of the uppermost
04621
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static and the oscillating components of the potential h
quite different interpretations: The oscillation amplitude no
is a length, the maximum lateral shift of the well with respe
to its value at rest. In dimensionless units@see Eq.~8!# the
potential reads

Ṽ~ x̃, t̃ !5Ṽ u~12ux̃2l̃cost̃ u!. ~13!

In particular,

l̃5
qE

mLv2
~14!

denotes the amplitude of the lateral oscillation in terms of
electrical field strengthE, chargeq, frequencyv, and total
width 2L of the well in unscaled units. The interaction r
gion is sharply defined here, given by the intervalux̃u<1
1l̃.

As in the case of the vertically oscillating square we
there are here two independent ways of formulating the
namics as a discrete map, defining Poincare´ surfaces of sec-
tion either at equidistant timestn5nT or at the steps of the
potential. The second option is better suited as a basis f
numerical calculation of trajectories. Due to the time dep
dence of the step position, the resulting map is quite ela
rate here; we derive it in Appendix C.

A first image of the scattering at the laterally oscillatin
square well is obtained again by considering time as a sp
coordinate. This system thus becomes a billiard with ripp
walls ~Tennyson billiard@35#!, see Fig. 10. The rippled-wal
billiard is known to exhibit a mixed dynamics. It gives rise
an infinite set of unstable periodic orbits. The simplest a
most prominent of them that can be transferred to the pre
case is the one connecting subsequentconvexextrema~inner
turning points! of the walls on alternating sides~cf. Fig. 10!,
of scaled period 2p. At the same time, there is a comple
mentary set of stable periodic orbits surrounded by regu
islands, inaccessible from outside. The simplest one of th
connects subsequentconcaveextrema~outer turning points!

e.
FIG. 8. Stroboscopic phase-space plot~a! and outgoing vs incoming momentum~b!, for a vertically oscillating smooth well, Eq.~12!,

with 2Ṽ05Ṽ154/9. In ~b!, lower panels are successive magnifications of the uppermost one.
8-6
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of the walls on alternating sides~cf. Fig. 10!. Taking a finite
depth of the potential into account, the rippled-wall billia
also serves as a model for a phenomenon that cannot occ
a vertically oscillating well: A trajectory that has alread
escaped from the well, but not from the interaction regi
can be ‘‘overtaken’’ by the moving wall and thus be reca
tured ~see leftmost orbit in Fig. 10!.

Another closely related system is the Fermi accelera
@36,37#. It arises as the limit of an infinitely deep well for th
present model. Also this comparison lets us expect a mi
dynamics in the laterally oscillating square well. Moreove
suggests that, in contrast to the vertically oscillating smo
well, the motion will bemorechaotic near the bottom of th
well, i.e., at low energies.

Various regimes can be distinguished, both with resp
to the amplitude and the frequency of the driving, that sh
different types of scattering:

The relevant characteristic time scales for the scatterin
oscillating potential wells are, on the one hand, the per
T52p/v of the driving, and on the other hand, a typic
time tpas spent in the scattering region. A crude classi
estimate of this time is the duration 4mL/p of one round trip
through the well, at the maximum kinetic energyp2/(2m)
5uV0u in the well, i.e.,tpas54LAm/2uV0u. In dimensionless

units @Eq. ~8!#, T̃52p and t̃ pas52A2/uṼ0u.
If these time scales are sufficiently different, the oscill

ing potential can be reduced to an effective static poten
This is the case in the adiabatic limitT@tpas and in the
diabatic limitT!tpas. In terms of the scaled parameters, th
correspond toṼ0@2/p2 and Ṽ0!2/p2, respectively. The
system is then essentially one dimensional again and
integrable. In the adiabatic case, the effective potential is
square well in its instantaneous position, in the diabatic c
it is the time average of the oscillating well. The latter w
be discussed below.

A nontrivial dynamics arises only ifT and tpas are com-

FIG. 9. Dwell-time distributionP( t̃ ) ~not normalized! for a ver-

tically oscillating smooth well, Eq.~12!, with 2Ṽ05Ṽ155. The

straight lines correspond to algebraic decaysP( t̃ ); t̃ 20.32 ~full line!

and; t̃ 21.21 ~dashed!.
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parable (uṼ0u&1). It then further depends on the amplitud
l̃. For smalll̃, phase space is mixed. For sufficiently stro
driving l̃@1, however, all the stable periodic orbits are d
stroyed since even the most stable one~see Fig. 10! would
intersect the moving walls at least once. Comparing to
Fermi accelerator, this corresponds to the chaotic reg
found at low energies@36#. It reaches out to beyond th
edges of the potential steps, where in the present cas
couples to asymptotically free trajectories. In this limit, t
scattering at the laterally oscillating square well becom
purely chaotic, except for high-energy scattering trajector
that pass over the well without feeling it.

In the following, we illustrate some of these regimes
numerical data. Figure 11~a! is a phase-space portrait at wea
driving l̃50.1. The dominating feature is a large regu
island. Its center atx̃50 and p̃'0.7 corresponds to the
stable periodic orbit between the outer turning points of
walls, described above. A similar unstable orbit between
inner turning points, at a smaller, negative momentum
embedded in the large chaotic area. The adjacent reg
regions consist of trajectories that are inaccessible from
side and bounce between the walls of the well, as in
Fermi accelerator. The separatrices forming the boundary
wards the scattering trajectories at high positive and nega
momenta are indicated by bold lines. At stronger driving,l̃
51.6 @Fig. 11~b!# @38#, the low-energy part of the interactio
region has turned completely chaotic. The prominent regu
island of the former case has disappeared, as have the s
ratrices between the chaotic region and the fast scatte
trajectories.

The corresponding deflection functions~Fig. 12! and
dwell-time distributions~Fig. 13! allow for the same conclu-
sions. Both deflection functions shown are self-similar, b
the one for stronger driving, Fig. 12~b!, is less regular and
shows a larger measure of chaotic sections. The dwell-t
distribution for the case with mixed dynamics, Fig. 13~a!, is
characterized by a crossover from exponential to algeb
decay, with exponent22.24, while in the fully chaotic case
Fig. 13~b! @38#, it is purely exponential.

FIG. 10. Scattering at the laterally oscillating square well, in
schematic space-time representation. The white central ‘‘chann
is the oscillating well, its walls being indicated by bold lines. T
leftmost trajectory~full line! exemplifies a process of transmissio
and subsequent recapture~just outside the lower wall!. The full line
on the right-hand side is a stable periodic orbit connecting ou
turning points of the wall, the dashed line connecting inner turn
points is an unstable periodic orbit.
8-7
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FIG. 11. Stroboscopic phase-space plots for a laterally oscillating square well, Eq.~13!, with Ṽ0520.75 and l̃50.1 ~a!, Ṽ0

520.04 andl̃51.6 ~b!. The bold lines in panel~a! are the separatrices between stable bound motion inside the well and sca
trajectories.
g

ta
In the diabatic limit,v→` or Ṽ0→0 ~in dimensionless
units!, the effective static potential is given by the avera
over a period of the driving of the time-dependent one,

Veff~x!5
1

T E
0

T

dt V~x,t !. ~15!

This time-averaged potential is different from any instan
neous shape of the potential~13!. In particular, if the ampli-
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tude of the driving is smaller than the width of the well,l̃
<1,

V̄~ x̃!52
Ṽ

p
3H arccos@2~16 x̃!/l̃ #, ux̃61u<l̃,

p, ux̃u<12l̃,

0, else,
~16!

while in the opposite case,l̃.1,
V̄~ x̃!52
Ṽ

p
3H arccos@2~16 x̃!/l̃ #, ux̃6l̃u<1,

arccos@2~11 x̃!/l̃ #1arccos@2~11 x̃!/l̃ #, ux̃u<l̃21,

0, else.

~17!
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See Appendix D for a derivation. In this latter case of stro
driving, the effective potential develops a centralmaximum.
The reason is that the oscillation ranges of the walls t
overlap near the origin. As a result, the potential there ta
on its higher value, zero, for a longer time within each per
than further outside. In effect, the potential assumes the f
of a double well, cf. Fig. 14. This requires that the squ
well slows down near the turning points of its lateral osc
lation as it does for a harmonic driving; by contrast, to
piecewise linear~sawtooth! or impulsive~delta! time depen-
dence, this does not apply. A situation converse to the
just described occurs for a laterally oscillating squarebarrier
~turn Fig. 14 upside down!: It develops a centralminimumif
the amplitude of the oscillation exceeds the barrier wi
@14#.

Figure 15 is a phase-space portrait of the laterally os
lating square well in its diabatic limit. Apparently, there a
no more chaotic areas present. The motion along the loc
regular-looking structures in the center is not integrable,
ther: Some of the incoming trajectories may loose suffici
g

n
s

d
m
e

e

h

l-

lly
i-
t

energy to the oscillating barrier walls that they rema
trapped for an appreciable time. As long as they rem
within one of the three smooth sections of the effective p
tential, cf. Fig. 14, they are confined to some torus of
corresponding static system. At the cusps of the potentia
x̃56(l̃21), however, the diabatic approximation is n
longer valid since there, a series of rapid collisions with t
walls may abruptly cease or set in. Thus, the jump ont
particular torus on which the trajectory continues on the
side of the cusp, can be considered a random event tha
pends sensitively on the phase of the oscillation in the m
ment of passing the cusp. A similar consideration applies
the events of entering or leaving the central phase-space
gion at x̃56(l̃11).

As these erratic jumps maintain a rest of chaoticity of t
motion, the concept of pseudointegrability does not ap
here, either. The most closely related case to compare wi
the return to integrability, in the limit of strong field, o
billiards that are rendered chaotic by the presence of a m
netic field @39#. In that limit, the Larmor radius becomes s
8-8
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small that they creep in an integrable manner along bound
sections with small curvature, but pass through chaotic
sodes where the radius is of the order of the Larmor radiu
below, specifically at cusps of the boundary.

The peculiar position of this type of motion between ch
otic and regular is further illustrated by the deflection fun
tions, Fig. 16~a!, that exhibit accumulation points of singu
larities but no true self-similarity, and by the dwell-tim
distribution, Fig. 16~b!. It falls off algebraically for long
times, but exceedingly rapidly, with an exponent27.64 for
this particular parameter set.

IV. QUANTUM DYNAMICS

A. Quantum scattering theory for time-periodic systems

Most textbooks on quantum mechanics~such as Ref.@40#!
include an introduction to the theory of scattering at tim
independent potentials. Time-dependent scattering, howe
is not usually considered~see, for example, Ref.@41#!, even
though it is relevant for numerous branches of physics
few articles deal with the generalization of time-independ
scattering theory to time-periodic systems. In Ref.@9#, the
existence of wave operators in time-periodic scattering s
tems was studied. The concept of an extended Hilbert sp
~see, for example, Refs.@21,22#! is used in Ref.@42# for
atoms in strong light fields and in Ref.@17# to describe mul-
tiphoton ionization and dissociation. The Born series is g
eralized in Ref.@43# to the case of time-periodic scatterin
systems, the low- and high-frequency limits of this theo
are considered in Ref.@44#. Another cornerstone of scatterin
theory, the Lippmann-Schwinger equations, has been
tended to periodicallykickedpotentials@12#. It can be further
generalized to potentials with a periodic, but otherwise a
trary time dependence@19,45#.

We assume in the following that the time dependence
the potential is restricted to a compact scattering region.
in the time-independent case, theSmatrix for a time-periodic
potential then transforms an incoming asymptotic free s
into an outgoing one,
04621
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ucout&5Suc in&. ~18!

The state vectors are taken in the Schro¨dinger picture and
refer to thesame time t050. The time evolution of the
asymptotic free states is governed byU0(t)
5exp(2iH0t/\), where H0 denotes the time-independen
asymptotic component of the Hamiltonian. TheS matrix, by
contrast, depends on the full, periodically driven Ham
tonian and in general, does not commute withU0(t). There-
fore, a shift in the reference timet0 in Eq. ~18! generally
leads to adifferent Smatrix,

S̃5U0~ t0!SU0
†~ t0!. ~19!

Only for t05nT, whereT is the period of the driving, we
haveS̃5S, as follows fromU0(nT)5u0

n, with u05U0(T),
and the conservation of quasienergy,@S,u0#50. As S andS̃
are related by a unitary transformation, they are isospec
i.e., have the same poles leading to the same resonance
associated widths.

The fact that time-periodic systems are described b
discrete dynamical group, generated by the Floquet opera
leads to the characteristics of the scattering process sum
rized in Table I.

In one dimension, total and partial transmission and
flection probabilities can be defined by a straightforwa
generalization of the corresponding concepts for tim
independent potentials. We define thepartial transmission
Tl(E) @reflection Rl(E)] to be the ratio of the transmitted
~reflected! outgoing flux with energyE85E1 l\v to the to-
tal incoming flux ~with energyE). The total transmission
~reflection! is given by the sum over all the correspondin
partial probabilities,

Ttot~E!5 (
l 52`

`

Tl~E!, Rtot~E!5 (
l 52`

`

Rl~E!, ~20!
FIG. 12. Outgoing vs incoming momentum for a laterally oscillating square well, Eq.~13!, at the same parameter values as in panels~a!
and ~b! of Fig. 11. Lower panels are successive magnifications of the respective uppermost ones.
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FIG. 13. Dwell-time distributionsP( t̃ ) ~not normalized! for a laterally oscillating square well, Eq.~13!, at the same parameter values

in panels~a! and ~b! of Fig. 11. The straight line in panel~a! corresponds to an algebraic decayP( t̃ ); t̃ 22.24, and that in panel~b! to an
exponential decay.
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where we setTl(E)5Rl(E)50 for E85E1 l\v,0. These
definitions and unitarity of theS matrix ensure thatTtot(E)
1Rtot(E)51 for all positive energiesE.

Transmission and reflection probabilities can be expres
in terms of the S matrix. It is defined with respect to flu
normalized incoming and outgoing asymptotic plane wa
states of the form

^xuce,n
06&5S m

2p\2kn~e!
D 1/2

e6 ikn(e)x, ~21!

where kn(e)5A2m(e1n\v)/\ and e is the quasienergy
This insures unitarity of theS matrix in the multichannel
case we are dealing with@46#. TheS matrix is given by

^ce,n
06uSuce8,n8

07 &5Sn,n8
67

~e! d~e2e8!. ~22!

For reflection-symmetric potentials,V(2x,t)5V(x,t), the
four blocksS66 of the S matrix reduce to two,

Sn,n8
17

~e!5Sn,n8
26

~e![Sn,n8
6

~e!. ~23!

The partial transmission and reflection probabilities are t
given by

FIG. 14. Time-averaged potential~full line! and instantaneous
potential at the turning points~dashed! of the laterally oscillating

square well, Eq.~13!, for l̃.1.
04621
ed

e

n

Tn2n8~e1n8\v!5uSn,n8
1

~e!u2, ~24!

Rn2n8~e1n8\v!5uSn,n8
2

~e!u2. ~25!

Depending only onuSn,n8
6 u2, they are independentof the

choice oft0 in Eq. ~19!.

B. Computational procedure

All the numerical results presented in the following a
based on the numerical solution of the time-depend
Schrödinger equation by propagation of wave packets, tak
advantage of the enormous simplifications that result if
time evolution is only monitored stroboscopically at discre
tn5nT. It then suffices to calculate the Floquet opera
U(T,0) once and apply it iteratively. We obtainU(T,0) us-
ing the (t,t8) method@17#, a formulation of Floquet theory

FIG. 15. Stroboscopic phase-space plot for a laterally oscilla

square well, Eq.~13!, with Ṽ052431025 and l̃51.6.
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FIG. 16. Outgoing vs incoming momentum~a! and dwell-time distributionP( t̃ ) @not normalized, panel~b!# for a laterally oscillating

square well, Eq.~13!, at the same parameter values as in Fig. 15. The straight line in~b! corresponds to an algebraic decayP( t̃ ); t̃ 27.64.
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that is particularly well adapted to harmonic forms of t
driving. It is most efficient if the time-periodic Hamiltonian

H~p,x;t !5
p2

2m
1V~x,t !5 (

m52`

`

Hm~p,x!eimvt, ~26!

has only a small number of nonvanishing Fourier com
nentsHm @17,45#. For systems with a locally confined driv
ing, Eq. ~1!, where the only nonzero components are tho
with m50, 61, the (t,t8) method works optimally.

In ac-driven systems described by the potential~5!, a rep-
resentation that allows for asymptotically free states
reached by performing a Kramers-Henneberger transfor
tion, see Appendix A. The time-dependent scattering the
sketched in Sec. IV A then applies directly. The transform
tion, however, destroys the factorization of the potential i
separate space and time dependences, see Eq.~6!. As a re-
sult, the discontinuities of the potential characterizing
square well carry over to the time dependence, leading to
exceedingly slow decayuuHmuu;1/umu, as shown in Appen-
dix D ~see also Ref.@14#!. This problem is circumvented b
calculating the Floquet operator in themomentum gauge, see
Appendix A 1, where the time dependence is deferred t
vector potential appearing only in the kinetic energy. In t
gauge the eigenfunctions of the kinetic energy, and thus
asymptotic states, are plane waves with a time-perio
phase factor, known as Volkov states@47#. In order to per-
form the stroboscopic wave-packet propagation, where ti
independent asymptotic states are required, one transfo
the Floquet operator from the momentum to the accelera
gauge, see Appendix A 2.

Besides the numerical calculation of transmission and
flection probabilities,Tl(E) andRl(E), it has proven usefu
to consider a heuristic dwell time in units of the periodT,

W~E;v!;(
j 50

` E
2L/2

L/2

dxuc~x, jT !u2, ~27!

whereL denotes the width of the scattering region.W(E;v)
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is distinct from the Wigner delay time, but can be read
obtained from the stroboscopic time evolution of wave pa
ets.

C. Effective potential and multiphoton processes

We begin the discussion of quantum scattering in o
models with the deep quantum regime, dominated by i
lated resonances with a mean separation larger than
width. In the context of driven scattering where no ener
spectrum proper exists, the concept of resonances oug
be made more precise. It here refers to quasibound Flo
states, i.e., states with a long life time within the scatter
region. It is easier to understand their existence returning
a moment to the more familiar view of a static potential pl
a driving field: The potential well accomodates a finite nu
ber of bound states—in the adiabatic and diabatic limits, th
are approximately given by the eigenstates of the effec
static potential—which become accessible from outside b
loss or gain of photons of the driving field. Resonances
sociated with a Floquet state with quasienergyea are thus
expected in the vicinity of incoming energies

Ein~a,nin!5ea1nin\v, ~28!

TABLE I. Comparison of time-independent and time-period
scattering systems

Time independent Time periodic
scattering systems scattering systems

Energy conserved Quasienergy conserved

S matrix: Sm;n S matrix: Sm,m;n,n

m, n: scattering channels m, n: scattering channels
m, n: Floquet channels

Incoming and Incoming and
outgoing energies outgoing energies

Eout5Ein Eout5Ein1 l\v
l 5m2n integer

v52p/T: driving frequency
8-11
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FIG. 17. Dwell timeW @Eq. ~27!, panel~a!#, total transmissionTtot ~b!, and transmissionsT0 ~c! andT1 ~d! into the elastic and the firs
inelastic channel, respectively, as functions of the incoming energyEin for a square well with oscillating bottom, Eq.~10!, with V52,
g50.9, L515, \51, m50.5, andV150 ~static case, dotted line! V150.2 ~full !, 1 ~dashed!, 2 ~dot-dashed!. Resonant energiesEin(a,nin)
are marked by vertical lines fornin51 ~full lines!, 2 ~dashed!, and 3~dot-dashed!.
or
s
g

fo
e

ro
a

at
e
to
d
s

e
e

-
a

o
io

al

n

-
s on
and outgoing energies

Eout~a,nout!5ea1nout\v, ~29!

so thatm5nout2nin is the net number of photons gained
lost during the process. While thesemultiphoton processe
appear inelastic from the point of view of static scatterin
they do not violate quasienergy conservation and there
are perfectly elastic in the Floquet picture. At the same tim
the Floquet framework allows one to define multiphoton p
cesses without any approximation. It is indispensable, in p
ticular, in the regime between the adiabatic and the diab
limit where the concept of an effective static potential do
not apply. We emphasize that the concept of multipho
processes is by no means new, but has been introduce
early as the 1960s, in the context of laser-atom interaction
high laser intensities~for a review, see, e.g., Ref.@48,49#!.

We found evidence for this picture in the data obtain
for all three models studied, in the transmission and refl
tion spectra as well as in the dwell time~27!. Figure 17~a!
shows the dwell time for the vertically oscillating well~10!
as a function ofEin for various values of the driving ampli
tude, compared to the static case. The vertical lines m
resonances according to Eq.~28!, for nin51, 2, 3. They en-
able us to interpret almost all of the visible peaks in terms
multiphoton processes. A global check of this interpretat
is given in Fig. 18. All the identifiable resonances~dots in
the v-E plane! are located on lines given by Eq.~28! for
04621
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specific values ofnin . We have found resonances for a tot
numbernin1nout of exchanged photons, up to six.

In a perturbative treatment of the driving, a multiphoto
process with a net exchange ofl photons with the field,
would correspond to anu l uth-order term. One therefore ex
pects a nonlinear dependence of the resonance strength

FIG. 18. Resonance positions in thev-E plane~dimensionless
units, full circles! for a square well with oscillating bottom@Eq.
~10!, V52, g50.9, L515, \51, massm50.5]. The bundles of
parallel lines indicate resonant energiesE5ea1nin\v, with nin

51, 2, 3 ~from below!, related to bound-state energiesea in the
static well.
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the driving amplitude. This is evidenced in Fig. 19. T
dwell-time peak heights depend in a highly nonlinear a
nonmonotonic manner on the oscillating partV1 of the po-
tential.

Signatures of resonances are also visible in the trans
sion and reflection spectra. Data for the total transmission
presented in Fig. 17~b! in a similar way as for the dwell time
in Fig. 17~a!. The transmissions for sufficiently strong driv
ing show a complicated energy dependence, totally differ
from the static case. The identification of individual res

FIG. 19. Dwell timeW as a function of incoming energyEin and
amplitudeV1, for a square well with oscillating bottom, Eq.~10!,
with V53, L55, v515\, andm50.5.
04621
d
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nances and their association with multiphoton proces
however, is difficult. The reasons are complicated li
shapes arising from interference of resonances with e
other or with the background.

Our numerical method allowed us to calculate transm
sions and reflections separately for the individual Floq
channels. Figure 17~c! is analogous to the previously dis
cussed one, but refers to the ‘‘elastic’’ (nin50) channel
only. It shows similar structures as the total transmission,
a general reduction of the scattering into this channel w
increasing amplitude of the driving. The corresponding
crease of the flow into the other channels is demonstrate
Fig. 17~d! showing the casenin51.

All the data depicted up to now have been obtained
the square well with vertically oscillating bottom. Since th
interpretation in terms of multiphoton processes is quant
mechanical and does not refer to the classical dynam
qualitative differences to the results for the two other mod
are not expected. Figure 20 shows data for the smooth
with oscillating bottom, Eq.~12!, for a selection of the quan
tities discussed above for the square well. The fact that
system supports pseudointegrable, the other chaotic clas
dynamics, has no systematic consequences for the scatt
in this regime.

The third model, the laterally oscillating square well, E
~6!, is different from the previous two cases in that here
time-averaged potential, Eq.~15!, never coincides with any
instantaneous one. As a consequence, the diabatic and
l,
FIG. 20. Dwell timeW ~a!, total transmissionTtot ~b!, transmissionsT0 ~c!, andT1 ~d! into the elastic and the first inelastic channe
respectively, as functions of the incoming energyEin for a smooth well with oscillating bottom, Eq.~12!, with V52, g50.9, L515, \
51, m50.5, andV150.3 ~full line!, 1.5 ~dashed!, 3 ~dot-dashed!. Resonant energiesEin(a,nin) are marked by vertical lines fornin51 ~full
lines!, 2 ~dashed!, 3 ~dot-dashed!, and 4~dotted!; dimensionless units used.
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MICHAEL HENSELER, THOMAS DITTRICH, AND KLAUS RICHTER PHYSICAL REVIEW E64 046218
adiabatic limits correspond to different potential shapes. T
allows us to check the concept of multiphoton proces
from a new perspective: In Fig. 21, the peaks in the dw
time are compared to the positions of resonances at ei
states of the effective potential in the adiabatic and the
abatic limit for a number of driving frequencies spanning t
transition from one limit to the other. The correspondi
shift of the peak positions is clearly visible.

A more surprising consequence of the diabatic effect
potential shape is discussed in the following section.

D. Tunneling at strong diabatic driving

As discussed in Sec. III C above, adiabatic and diab
limits of the driving can be defined asv@tpas

21 andv!tpas
21 ,

respectively, wheretpas is the classical time for one roun
trip through the well at an energy just below its edge.
these limits, scattering occurs approximately at an effec
static potential. In the adiabatic case, it is the instantane
state of the time-dependent potential. In the diabatic cas
is the potential averaged over a period of the drivin
Veff(x)5T21*0

Tdt V(x,t).
The shape of the diabatic potential does not coincide w

any instantaneous one. The laterally oscillating square w
Eq. ~6!, may even develop a central barrier and thus assu
the form of a double well, see Eq.~17! and Fig. 14.

In this limit, the eigenstates of the effective potential a
good approximations to the Floquet states of the driven s
tem. For a sufficiently deep double well, quantum mechan
predicts the formation of tunnel doublets below the top of
central barrier, with a splitting that depends exponentially
the area below the barrier. In the present case, these s
are resonances, so a doublet structure in the spectrum
corresponding tunneling in the time domain will occur on
if the full width of the resonances is smaller than their se
ration. We demonstrate in Fig. 22 that this is indeed possi
The spectrum of the effective potential~panel a! shows a
relatively wide doublet that appears as a double minimum
the total transmission~b! and in T0 ~c!, and as a double

FIG. 21. Dwell timeW as a function of the incoming energ
Ein , for a laterally oscillating square well, Eq.~6!, with dimension-
less units,V521, L52.5, l51, m515\, and v50.1 ~a!, 0.3
~b!, 0.6 ~c!, 1 ~d!. Resonant energiesEin(a,nin) for the adiabatic
and the diabatic limits are marked by dotted and dashed ver
lines, respectively.
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maximum inT1 ~c!. The different signature of the resonanc
in these quantities is readily understood, assuming tha
long dwell time decorrelates the outgoing from the incomi
conditions and thus drives transmissions as well as refl
tions towards intermediate values around 0.5.

In the time domain~Fig. 23!, we observe exponentially
decaying oscillations, with opposite phase, of the populati
of the left and right half of the scattering region, giving cle
evidence of a temporary tunneling of the scattering wa
packet between the two wells. The observed period of
oscillation (Tobs'4232p) is in reasonable agreement wit
the value predicted on basis of the splittingDE of the cor-
responding eigenstates of the effective potential (Tspl
52p\/DE'3632p), taking into account the frequency re
duction by the damping.

al

FIG. 22. ~a! Effective potential~full line!, ~b! total transmission
Ttot ~full line, along abscissa! vs energyEin ~along ordinate!, ~c!
partial transmissionsT0 ~full line! andT1 ~dotted!, for the laterally

oscillating square well, Eq.~6!, with l̃.1. In all three panels, the
bound-state energies of the diabatic effective potential, corresp
ing to resonant energiesEin(a,nin) ~dimensionless units!, are
marked as horizontal dotted lines.

FIG. 23. Overlap of a scattering wave packet with the right~full
line! and the left half~dashed! of the scattering region, vs time. Th
wave packet came in from the left with an energy near the cente
the tunneling doublet visible in Fig. 22. The scattering potential a
its parameters are as in Fig. 22.
8-14
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FIG. 24. Phase-space sna
shots of the same tunneling wav
packet as underlies Fig. 23, i
terms of the Wigner function, a
t/T560 ~a!, 70 ~b!, 80 ~c!, and 90
~d!. The interval spanned corre
sponds roughly to a full tunneling
cycle. The scattering potential an
its parameters are as in Fig. 22.
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A similar phenomenon has been studied in the contex
strong laser irradiation of atomic hydrogen, likewise with
harmonic driving but with a Coulomb potential instead o
square well@50#. There, however, a high-frequency approx
mation was introduced that decouples the states within
well from the continuum. This precludes to study how th
type of tunneling process manifests itself in scattering.

In the case of a laterally oscillating squarebarrier, a dual
counterpart of the effect discussed above occurs@14#: The
effective potential in the diabatic limit splits into a doub
barrier that accomodates quasibound Floquet states withi
central well, giving rise to transport via tunneling at the e
ergies of these metastable states.

Of course, the same interpretation in terms of tunnel
through an effective central barrier must also apply to
model with explicit ac-driving term, Eq.~5!. There, it is the
inertia of the system that prevents its passing through
center of the well at high frequency and amplitude of t
driving. In whatever ‘‘gauge,’’ the absence of energy cons
vation due to the driving implies that the concept of a sta
potential barrier is inadequate. In this sense, we are h
dealing with ‘‘dynamical tunneling.’’

At the same time, the observed phenomenon sho
clearly be distinguished from modifications of tunneling, i
cluding its coherent suppression, due to a periodic driv
@51#. There, thestatic potential already possesses a dou
minimum giving rise to tunneling, which can then be furth
modified by the driving. Here, in contrast, it is only the dri
ing that generates, in the first place, a central barrier in
otherwise purely attractive potential. To see the additio
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effects reported in Ref.@51# would require to superpose
second driving with a suitable frequency, much slower th
the diabatic one that produces the effective double-well
tential shape.

E. Quantum scattering in phase space

Although we remain marginally close to the classical lim
in our numerical experiments, we still expect to see fi
indications of the intricate structures of the classical ph
space, shown in the previous sections, in the quantum s
tering. While our data are not suitable to identify the finge
prints of chaotic scattering in the spectral statistics of thS
matrix @52#, we are able to compare wave packets within t
scattering region with the corresponding classical pha
space structure.

Details of the definition of the Wigner function in a dis
crete phase space, as it is underlying all our numerical
culations on the quantum level, are presented in Appendi

The same process as in Fig. 23 is shown in Figs. 24~a–d!
in terms of snapshots of the Wigner function at four equid
tant times, separated roughly by a quarter tunneling cy
An unexpected feature clearly visible in this sequence is
return of the tunneling wave packet near zero momentu
thus forming a cyclic motion in phase space. This finding
consistent with a general analysis of tunneling in terms of
Wigner function@53#: The fraction of the Wigner function
that tunnels moves along classical trajectories higher in
ergy than, i.e.,outside, the separatrix emanating from the to
of the tunneling barrier.
8-15
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MICHAEL HENSELER, THOMAS DITTRICH, AND KLAUS RICHTER PHYSICAL REVIEW E64 046218
A representative example of classical-quantum corresp
dence in terms of the Wigner function is shown in Fig. 2
We have chosen parameter values where the classica
namics~cf. Fig. 11! is characterized by the coexistence o
global chaotic scattering area with a large regular isla
inaccessible from the asymptotic regions, embedded in it
the figure, the corresponding quantum phase space is re
sented in terms of the Wigner function for the wave pack
averaged over a few time steps while it is mainly loca
within the scattering region.

In the gray-scale presentation chosen, the incoming
the directly reflected components of the wave packet st
out as exceedingly bright regions, to the left of the scatter
region, at positive and negative momentum. The interac
region itself can be discerned due to a population den
generally higher inside than outside. Superposed, one di
guishes small-scale ripples, which give evidence of the
herence of the Wigner function and prove strongly param
dependent, from oscillations of larger wavelength inside
scattering region. A comparison with the classical pha
space portrait, Fig. 11, suggests that these oscillations
signatures of the classical tori limiting the chaotic area fr
below, and of the regular island inside it. This is confirm
by our repeating, as a bold closed line, the outline of
island in the Wigner-function plot.

Given that this island is inaccessible for classical scat
ing trajectories, it surprises that it nevertheless shows u
the phase-space representation of a quantum scattering
packet. Evidently, it can only be accessed by tunnel
across the mixed boundary region separating the island f
the chaotic sea. Indeed, we are here not yet far inside
semiclassical regime where such tunnel processes woul
exponentially suppressed. A similar case of a classical re
lar island influencing the quantum scattering has been
ported in Ref.@13#.

V. CONCLUSION

With this work, we have pursued a twofold intention:
provide particularlysimplemodels that qualify as prototype

FIG. 25. Gray-scale plot~brightness increases with amplitud!
of the Wigner function averaged over a few periods of the stro
scopic time evolution during scattering. Classical parameters ar
in Fig. 11, and\eff5\/(L2mv)51/49 ~a dimensionless effective
quantum of action!. The closed bold curve is the classical separa
shown in Fig. 11.
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of classical and quantum irregular models, and to come
close as possible torealistic experimental situations, specifi
cally in mesoscopic physics. The key ingredient, in both
gards, is a harmonic driving. It allows to reduce the num
of spatial dimensions to one, and at the same time, capt
the essence of most of the driving mechanisms availabl
the laboratory.

We have aimed at a comprehensive treatment of tim
dependent scattering in the regime of large amplitude of
driving. In this respect, the Floquet approach used repres
both an efficient tool for numerical calculations of the sc
tering matrix, transmission amplitudes, and dwell times,
well as a suitable framework to understand multiphoton p
cesses at strong driving. Correspondingly, we used stro
scopic phase-space plots, deflection functions and dwell-t
distributions as tools to visualize and classify the class
scattering dynamics.

We have shown that ac-driven one-dimensional scatte
systems cover a wide spectrum of nonlinear classical dyn
ics, with properties ranging from pseudointegrable behav
via mixed phase-space characteristics up to strong chaos
have identified features of the classical phase-space s
tures in Wigner representations of propagating wave pack
In this respect, a more quantitative analysis of quantu
classical correspondence in time-periodic scattering is de
able. It requires further quantum calculations in the tru
semiclassical regime@16#.

On the quantum-mechanical side, we have pointed out
role of multiphoton processes for the transmission. A stro
driving can alter the features of the static scattering poten
completely. This has become particularly evident when c
sidering asinglequantum well that, upon harmonic driving
behaves like an effectivedoublewell, with features of a di-
atomic molecule.

As mentioned in the Introduction, mesoscopic electro
devices represent promising experimental tools for study
driven quantum scattering and for observing the classical
quantum effects discussed throughout this work. Hig
mobility semiconductor microstructures have already prov
ideal laboratories to investigate quantum-chaotic aspect
dc transport@54,55#. Quantum charge transport through su
microstructures, which can be devised as electron billia
exhibits clear signatures of the underlying classical dynam
determined by the confinement geometry. For instance, c
sical dwell-time distributions directly influence correlation
in observed quantum conductance fluctuations@54#.

An experimental extension to the time-dependent dom
would enlarge the number of control parameters and al
for addressing the rich variety of complex-scattering ph
nomena an ac driving provides. Interesting effects are p
ticularly expected for strong driving with a period comp
rable to the time of flight of an electron through th
scattering region. This regime can nowadays be reache
ballistic mesoscopic transport: The typical time of flig
through a micron-sized GaAs quantum well with electr
densityns.5310215 m22 is of the order of 10211 s. This
corresponds to~radio!frequenciesv in the range of some 100
GHz that have been employed in recent transport meas
ments@4#.

-
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CLASSICAL AND QUANTUM PERIODICALLY DRIVEN . . . PHYSICAL REVIEW E64 046218
Mesoscopic transport experiments often involve quant
wells or quantum dots weakly coupled to leads or reserv
via tunneling barriers. A simplified one-dimensional mod
is sketched in Fig. 26. The conductance of such a de
usually depends sensitively on the~Fermi! energy and on
additional gate voltages that may change the depth or ef
tive width of the quantum well. Charge transport is strong
affected and mediated by resonant states inside the well
give an idea how an ac driving can alter the quantum tra
mission through such a device, we have computed the tr
mission and dwell times quantum mechanically for t
model potential in Fig. 26. The potential with rectangu
tunnel barriers is obtained by superimposing a barrier
width 2L1 with a well of smaller width 2L0,

V~x!5V0u~L02uxu!1V1u~L12uxu!. ~30!

After the Kramers-Henneberger transformation the tim
periodic driving leads to a laterally oscillating potenti
V„x2l cos(vt)…. A similar double-barrier potential~without
a well between the barriers! has been studied in Ref.@56#
using the transfer-matrix approach for piecewise constant
tentials@57#.

The effect of the ac driving on the total transmission a
the effective dwell time, Eq.~27!, is depicted in Fig. 27. The
different curves in both panels show the evolution of tra
mission and dwell time as a function of the incoming ene
for increasing driving strength up to intermediate values
l. For l50, there is a maximum in the transmission and
the effective dwell time atE'0.4, owing to resonant tunne
ing through the static double barrier. For finite driving th
maximum is suppressed. Instead, distinct structures arise
are particularly clearly visible in the dwell time. They resu
from photonic coupling to quasibound states formed in
time-varying scattering potential~at energies\v below the
energy of the dwell time peaks!. Therebye, the total trans
mission can be changed considerably, turning for insta
the transmission maximum atE'0.85 into a sharp dip in the
presence of an ac field. This shows that it is possible to
an ac driving for the control of transmission through qua
tum wells.

FIG. 26. Model of a quantum well with tunnel barriers.
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Effects arising at even stronger driving are shown in F
28 for the dwell time. New groups of peaks appear at hig
incoming energy~betweenE51.5 and 2 and betweenE
52.5 and 3!, which reflect coupling to resonant states in t
oscillating well due to multiphoton processes at energ
Ea,nin

~28! with nin52 and 3. These peaks show up for

driving strengthl*1.
The models for scattering systems treated here rely o

single-particle picture. A more realistic description of
transport in mesoscopic devices, however, has to accoun
electron-electron interaction effects. They are particula
important if one deals with transport through quantum d
instead of vertical transport through quantum wells with co

FIG. 27. Total transmissionTtot ~upper panel! and dwell timeW
~lower panel! as functions of the incoming energyE for the laterally
oscillating double-barrier well, Fig. 26 and Eq.~30!, with V0

521, L055, V150.5, L156, v51, m515\, and different~lat-
eral! driving amplitudel50 ~static case, dotted line!, l50.25~full
line!, l50.5 ~dashed line!, andl50.75 ~dashed-dotted line!.

FIG. 28. Dwell timeW as a function of the incoming energyE
~dimensionless units! for the laterally oscillating double barrie
well, Fig. 26, for the same parameters as in Fig. 27 but with diff
ent driving strengthl50,0.5,1,1.5, and 2.
8-17
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MICHAEL HENSELER, THOMAS DITTRICH, AND KLAUS RICHTER PHYSICAL REVIEW E64 046218
finement only in one spatial direction. Still, even for a pe
turbative time-periodic driving our knowledge of the role
interactions for the conductance is rather incomplete. Mo
over, interaction effects on transport in the regime of stro
driving remain an open field and their adequate treatme
challenge. Again, the Floquet approach may provide a c
venient framework to account for the time periodicity, a
interesting physics is expected from the interplay betw
interactions and strong time-periodic driving.
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APPENDIX A: CLASSICAL AND QUANTUM
KRAMERS-HENNEBERGER TRANSFORMATIONS

1. Classical transformations

Consider a charged particle in one dimension, subjec
the total potential

Vtot~x,t !5V~x,t !1xg~ t ! ~A1!

~the generalization to higher dimensions is straightforwa!.
The scattering potentialV(x,t) allows for the definition of
asymptotically free states, but may be arbitrarily time dep
dent. The drivingg(t) is also completely arbitrary here, i
particular, it need not be periodic. In the representation
terms of a scalar potential or thelength gauge, the Hamil-
tonian and the Lagrangian read, respectively,

H l~xl ,pl ,t !5
pl

2

2m
1V~xl ,t !1xlg~ t !, ~A2!

and

L l~xl ,ẋl ,t !5
m

2
ẋl

22V~xl ,t !2xlg~ t !. ~A3!

They lead to the equation of motion

ẍl52
1

m
~V8~xl ,t !1g~ t !!, ~A4!

with V8(x,t)5]V(x,t)/]x.
The driving term can be moved from the potential to t

kinetic energy, by a gauge transformation with the gene
ing function
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Fm~xm ,t !5xmpg~ t ! ~A5!

introducing

pg~ t !5mẋg~ t !5E
t0

t

dt8 g~ t8!, xg~ t !5
1

mE
t0

t

dt8 pg~ t8!.

~A6!

This defines themomentum gauge, where

Lm~xm ,ẋm ,t !5L l~xm ,ẋm ,t !1
d

dt
Fm~xm ,t !

5
m

2
ẋm

2 1mẋmẋg~ t !2V~xm ,t !. ~A7!

From the momentum

pm5m„ẋm1 ẋg~ t !…, ~A8!

canonically conjugate toxm , one obtains the Hamiltonian

Hm~xm ,pm ,t !5
1

2m
@pm2pg~ t !#21V~xm ,t !, ~A9!

where the driving now appears as a magnetic-field term
the kinetic energy. The equations of motion generated by
Lagrangian~A7! and the Hamiltonian~A9!, respectively, are
identical to Eq.~A4!.

The acceleration gaugeis reached by a transformatio
generated by

Fa~x,t !5xpg~ t !1
1

2mE
t0

t

dt8 „pg~ t8!…2, ~A10!

instead of Eq.~A5!. It leads to the Lagrangian

La8~x,ẋ,t !5
m

2
@ ẋ1 ẋg~ t !#22V~x,t !. ~A11!

By an additional point transformation

xa5x1xg~ t !, ~A12!

it takes the form

La~xa ,ẋa ,t !5
m

2
ẋa

22V„xa2xg~ t !,t… ~A13!

which implies that

pa5mẋa ~A14!

is the corresponding momentum canonically conjugate toxa .
The transformed Hamiltonian thus reads

Ha~xa ,pa ,t !5
1

2m
pa

21V„xa2xg~ t !,t…. ~A15!

The equation of motion in the present frame is now lack
an additive driving term,
8-18
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ẍa52
1

m
V8„xa2xg~ t !,t…. ~A16!

Equation ~6! is retained by settingV(x,t)5V0f (x) and
g(t)52qE sin(vt).

2. Quantum transformation

Starting from the Hamiltonian~A2!, the Schro¨dinger
equation in the length gauge reads

i\
]

]t
c l~x,t !5F2

\2

2m

]2

]x2
1V~x,t !1xg~ t !Gc l~x,t !.

~A17!

By a shift in momentum, cf. Eq.~A8!,

c l~x,t !5expH 2
i

\
xpg~ t !J cm~x,t !, ~A18!

one arrives at the Schro¨dinger equation in the momentum
gauge,

i\
]

]t
cm~x,t !5F 1

2m H \

i

]

]x
2pg~ t !J 2

1V~x,t !Gcm~x,t !,

~A19!

consistent with the classical Hamiltonian~A9! in this gauge.
The quantum transformation leading from here to the

celeration gauge,

cm~x,t !5expF2
i

\ H 1

2mE
t0

t

dt8 „pg~ t8!…2

2xg~ t !
\

i

]

]xJ Gca~x,t ! ~A20!

comprises both a change in phase corresponding to the
ond term in the generating function~A10!, and a coordinate
shift, cf. Eq.~A12!. The transformed wave functionca(x,t),
after replacingx→xa2xg(t), solves the Schro¨dinger equa-
tion

i\
]

]t
ca~xa ,t !5F 1

2m H \

i

]

]xa
2pg~ t !J 2

1V„xa2xg~ t !,t…Gca~xa ,t !, ~A21!

in accordance with the classical Hamiltonian~A15!.

APPENDIX B: POWER-LAW DECAY OF THE
DWELL-TIME DISTRIBUTION FOR THE

VERTICALLY OSCILLATING SQUARE WELL

The resonance condition for trajectories in the vertica
oscillating square well that needl periods of the driving to
cross the well, reads@cf. Eq. ~10!#
04621
-

ec-

p̃l5
1

lp
, l 51,2, . . . . ~B1!

see Fig. 1 in Sec. III A.
Whether a trajectory is trapped in the well depends furt

on its kinetic energyT̃5 p̃2/2. If Ṽ02Ṽ11T̃.0, it can leave
even at a minimum of the driving. If, on the other han
Ṽ01Ṽ11T̃,0, it cannot even escape at a maximum. On
in the intermediate regime2Ṽ02Ṽ1,T̃,2Ṽ01Ṽ1, open
andclosed windowsalternate in time, during which trajecto
ries with kinetic energyT̃ can leave or not. Their respectiv
durations are

t̃ closed5g P̃, t̃ open5~12g!P̃, ~B2!

whereP̃52p is the dimensionless period of the driving, an
the relative measure of the trapped initial conditions is

g512
1

p
arccos

2uṼ0u2 p̃2

2Ṽ1

. ~B3!

The condition that there exist both open and closed windo
implies a lower bound on the resonant momenta,p̃l

2/2

2uṼ0u1Ṽ1>0. Since the resonant momenta decrease w
order l, this amounts to an upper bound onl,

l< l max5 intS 1

pA2~ uṼ0u2Ṽ1!
D . ~B4!

Equation~B4! shows that in order to create a large number
resonances,l max@1, uṼ0u2Ṽ1 should be small, that is, the
maximum of the oscillating potential should almost reach
edges of the static well.

If trajectories with momentump̃l inside the well have
entered during an open window, they will leave immediate
once they reach the other side of the well~Fig. 3!. For a
scattering trajectory, in order to remain trapped for a lon
time, a small deviation from the resonance condition
needed,

p̃l ,«5~11«! p̃l , ~B5!

wheree can have either sign, but must at least be so sm
that the corresponding interval aroundp̃l does not overlap
with the adjacente neighborhoods ofp̃l 61. This means
«,1/l .

Even for p̃l ,« , in particular if«!1, only a small fraction
of incoming trajectories will remain temporarily trappe
~Fig. 29!. The seeked dwell-time distribution therefore d
pends on two factors, the probabilityPls(«) to take the long
sojourn and the distributionP( t̃ u ls) of dwell times for the
long sojourns, given the distribution of«. They will be dis-
cussed in this order.

In order to head for a long sojourn, a trajectory that e
tered within an open window must be in a closed windo
once it hits the opposite side of the well for the first tim
8-19
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which in turn defines a time interval for the initial condition
see Fig. 29. Its duration coincides with the advance or de
after crossing the well once, of trajectories withp̃l ,« with
respect to the resonant trajectories withp̃l ,

t̃ l ,e5
2L̃

p̃l

2
2L̃

p̃l ,«

5
2p l«

11«
. ~B6!

The relative measure of these initial conditions is thus

Pls~«!5
t̃ l ,«

T̃
5

l«

11«
. ~B7!

It cannot exceed unity since«,1/l .
In a stroboscopic representation, the narrow bundle of

jectories on a long sojourn is advanced~delayed! with re-
spect to the ‘‘trailing~leading! edge’’ of the closed window,
by t̃ l ,e per passage across the well~Fig. 29!. The minimum
number of reflections necessary to reach the leading~trailing!
edge of the preceding~subsequent! open window and to
leave the well therefore is

nl ,«8 5 intS t̃ closed

t̃ l ,«
D 5 intS g~11«!

l e D . ~B8!

This occurs for a fraction

P~nl ,«8 !512Fg~11«!

l«
2 intS g~11«!

l e D G
512S g~11«!

l« D mod 1 ~B9!

FIG. 29. Schematic space-time representation of a bundle

almost trapped trajectories, with near resonant momentump̃1,« , see
Eq. ~B5!. While all of the incoming trajectories with resonant m

mentump̃1 ~light gray band! leave at the next open window~bold
sections of the horizontal lines! of the potential, part of those with

p̃1,« ~right darker band! head for a long sojourn. They leave~left
darker band! only after, in this case, six or seven reflections at
potential steps, respectively, represented stroboscopically within
same period of the driving.
04621
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of the trajectories in the bundle. The remaining trajectori
with weight 12P(nl ,«), leave at the ‘‘next exit,’’ i.e., after
nl ,«9 5nl ,«8 11 reflections.

It thus turns out that the number of reflections, and with
the dwell time, is deterministically related to«—up to the
choice betweennl ,e8 andnl ,«9 . However, as only high value
l @1 andg&1 are of interest, we replace those two refle
tion numbers, with small relative error, by a single valu
their weighted mean~not necessarily integer!,

n l ,«5P~nl ,«8 !nl ,«8 1P~nl ,«9 !nl ,«9 5
g~11«!

l«
, ~B10!

to obtain the dwell time

t̃ l ,«5n l ,«

2L̃

p̃l ,«

5
2pg

«
. ~B11!

Considering only narrow windowse!1 around eachp̃l ,
we can assume the momentum inside the well to be appr
mately equidistributed if the distribution of the incomin
momentum is smooth on a scalep̃l2 p̃l 11. Equation~B5!
then implies that also« is equidistributed, and we obtain th
dwell-time distribution for long sojourns

P~ t̃ u ls!5Ud t̃

d«
U21

P~«!;
l

2pg t̃ 2
. ~B12!

By means of Eq.~B11!, e is replaced byt̃ also in Eq.~B7!,

Pls~ t̃ !' l«5
2pg

t̃
, ~B13!

so that finally, for thel th resonance,

Pl~ t̃ !5P~ t̃ u ls!Pls~ t̃ !;
l

t̃ 3
. ~B14!

Equation ~B14! shows that higher resonances contribu
stronger to the dwell-time distribution.

The unknownt̃ -independent proportionality factor in Eq
~B14! depends on the distribution ofe and with it, on that of
the incoming momenta. Since the respectivee neighbor-
hoods around thep̃l have been defined so as to be disjun
their contributions to the total dwell-time distribution can b
superposed independently,

P~ t̃ !5(
l

Pl~ t̃ !; t̃ 23, t̃ @1. ~B15!

The same reasoning, with only minor modifications, a
plies also to the distribution of dwell times in ‘‘domino bil
liards,’’ i.e., zigzag chains of rectangular billiards@33#. A
more general derivation of thet23 decay of the dwell-time
distribution is presented in Ref.@31#.
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APPENDIX C: CLASSICAL MAP FOR SCATTERING AT
A LATERALLY OSCILLATING SQUARE WELL OR

BARRIER

We describe the scattering at the laterally oscillat
square well~6! in terms of a map from one encounter wi
either one of the moving walls to the next. It is thus based
a Poincare´ surface of section that depends on time~the two
walls can be conceptually merged into one by taking
reflection symmetry of the system with respect to the cen
of the well into account!. Accordingly, we denote byx̃n , p̃n ,
t̃ n , the position, momentum, and time, respectively, at
nth collision, scaled as in Eq.~8!. In addition, we introduce
the binary-valued auxiliary variablei n . It takes the values 1
~0!, if immediately after the collision, the trajectory contin
ues inside~outside! the well. For completeness, we includ
the case of a moving squarebarrier.

The calculation ofx̃n11 , p̃n11 , t̃ n11 and i n11 is per-
formed in three steps:

Calculation of t̃n11. We define

F6~ x̃n ,p̃n , t̃ n ; t̃ !5 x̃n1 p̃n~ t̃ 2 t̃ n!1 x̃6~ t̃ !, ~C1!

where

x̃6~ t̃ !5611l̃cost̃ ~C2!

are the positions of the right and left wall, respectively,
time t̃ . The zeros ofF6( x̃n ,p̃n , t̃ n ; t̃ ) are the times when a
freely moving particle, starting at timet̃ n and positionx̃n

with momentump̃n crosses the right or the left wall of th
well. Therefore, possible candidates fort̃ n11 are determined
by

F6~ x̃n ,p̃n , t̃ n ; t̃ n11
6 !50, ~C3!

so that

t̃ n115 min
t̃ n11. t̃ n

~ t̃ n11
1 , t̃ n11

2 !. ~C4!

The zeros t̃ n11
6 have to be calculated numerically. If th

inequality t̃ n11. t̃ n cannot be fulfilled, no further collision
with the walls of the well takes place and the trajectory co
tinues freely tox̃→sgn(p̃n)` with momentump̃n .

Calculation of x̃n11. Once the timet̃ n11 of the n11st
collision is known, one has immediately,

x̃n115 x̃6~ t̃ n11! if t̃ n115 t̃ n11
6 . ~C5!

Calculation of p̃n11 and in11. The fate of a trajectory en
countering a moving potential step depends on whethe
comes from the low or the high side of the step, and on
momentum relative to the step. The first condition is enco
in i n . The second refers, specifically, to the kinetic ene
Tl( p̃l)5( p̃l)

2/2 in the reference frame moving with the we
i.e., in the length gauge defined in Appendix A, compared
04621
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Ṽ0, the well depth~or barrier height ifṼ0.0). In that refer-
ence frame, the momentum isp̃l n5 p̃n2 p̃g( t̃ n11), denoting
p̃g( t̃ )52l̃sin t̃, the velocity of the well in the acceleratio
gauge. By going into the length gauge and defining the a
iliary variable

Ṽn5uṼ0uS 3

2
2U i n2sgn~Ṽ0!2

1

2U D , ~C6!

the various cases reduce to two:
Tl( p̃l n),Ṽn : reflection

i n115 i n, ~C7!

p̃ln1152 p̃n . ~C8!

Tl( p̃l n).Ṽn : transmission

i n11512 i n, ~C9!

p̃ln115sgn~ p̃l n!Ap̃l n
2 12~2i n21!Ṽ0. ~C10!

For a trajectory entering the interaction region from the l
at phasef0 of the driving and with momentump̃.0, the
initial conditions are t̃ 05f0 , x̃05 x̃1( t̃ 0), p̃05 p̃, and i 0
50.

APPENDIX D: FOURIER EXPANSION OF THE
LATERALLY OSCILLATING SQUARE WELL

The temporal Fourier series for the laterally oscillati
square well potential is defined by

V~x,t !5V u~L2ux2l cos~vt !u!

5
a0~x!

2
1(

j 51

`

@aj~x!cos~vt !1bj~x!sin~vt !#.

~D1!

Due to time-reversal invariance,V(x,t)5V(x,2t), the sine
coefficientsbj (x) vanish and

aj~x!5
2

TE0

T

dt V~x,t !cos~ j vt !, ~D2!

for all positive integersj. The time average of the potential
given by

V̄~x!5
a0~x!

2
5

1

TE0

T

dt V~x,t !. ~D3!

Introducing t5vt and usingu(a2ubu)5u(b1a)2u(b
2a), one has

aj~x!5
V

p
~ I j

12I j
2!, ~D4!

where
8-21
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I j
65E

0

2p

dt u~x6L2l cost!cosj t5I j
1~6L !. ~D5!

Hence it suffices to calculateI j
1 . The Heaviside function

restricts the integration range in Eq.~D5! to x1L.l cost.
There are three cases:

I j
155

0, x1L<2l,

E
t1

t2
dt cosj t, 2l,x1L,l,

E
0

2p

dt cosj t52pd j , x1L>l.

~D6!

For the second option, the integration range is given by
solutions ofx1L5l cost, namely

t15arccosS x1L

l D , t252p2t1 . ~D7!

Therefore in this case, using arccos(x)5p2arccos(2x),

I 0
152 arccosS 2

x1L

l D , I j
152

2

j
sinF j arccosS x1L

l D G ,
~D8!

where j >1. All three cases can be summarized as

I 0
152pu~x1L2l!22u~l2ux1Lu!arccosS 2

x1L

l D ,

~D9!

I j
152

2

j
u~l2ux1Lu!sinF j arccosS x1L

l D G . ~D10!

With Eq. ~D5!, this implies in particular

I 0
12I 0

252p u~L1l2uxu!22(
1,2

u~l2uL6xu!

3arccosS L6x

l D . ~D11!

Finally, with the help of Eqs.~D3! and ~D4!, the time-
averaged potential is obtained as~see Fig. 14!

V̄~x!5VS u~L1l2uxu!

2
1

p (
1,2

u~l2uL6xu!arccosS L6x

l D D . ~D12!

After scaling according to Eq.~8!, this is equivalent to Eqs
~16! and ~17!. Likewise, for j >1,

aj~x!52
2V

j p (
1,2

u~l2ux6Lu!sinF j arccosS x6L

l D G .
~D13!
04621
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As the potential, Fourier expanded in Eq.~D1!, has finite
discontinuities, one expects a slow algebraic decay of
Fourier coefficients. Indeed, according to Eq.~D13!,

uaj~x!u;
1

j
. ~D14!

The same applies to the coefficients 2c6umu(x)5aumu(x)
7 ibumu(x) of V(x,t)5(m52`

` cm(x)eimvt, i.e., ucm(x)u
;1/umu. Since in the Hamiltonian~26!, the kinetic energy is
time independent, one concludes for its Fourier coefficie

uuHm~x,p!uu;
1

umu
, mÞ0. ~D15!

APPENDIX E: DEFINITION OF THE WIGNER FUNCTION
FOR DISCRETE CONFIGURATION AND MOMENTUM

SPACE

The definition of quantum-mechanical phase-space re
sentations depends on the topology of phase space. Th
obvious for the Husimi distribution, through the dependen
on phase-space topology of the coherent states on which
based, but it is also true for the Wigner function. Consid
first the case of action-angle variablesp and u, whereu is
cyclic so that the phase space assumes the topology
cylinder, implying discretization ofp, pl5\ l . A naive appli-
cation of the definition of the Wigner function for a plan
phase space,

W~p,u!5
1

2p\E2`

`

du8 e2 ipu8/\c* S u2
u8

2 DcS u1
u8

2 D ,

~E1!

taking the periodicity of the wave function,c(u12p)
5c(u), into account, results in

W~p,u!5 (
l 52`

`

Wl~u!dS p2
\

2
l D , ~E2!

Wl~u!5 (
l 852`

`

exp~2p i l 8u!c̃ ( l 2 l 8)/2
* c̃ ( l 1 l 8)/2 , ~E3!

wherec̃ l5(2p)21/2*0
2pdu exp(2ilu)c(u) is the action rep-

resentation ofc(u).
This Wigner function has support also at unphysical, ha

integer values of the action in units of\. However, due to
the parity

Wl~u1p!5H Wl~u!, l even,

2Wl~u!, l odd,
~E4!

it exhibits alternating signs at alternating values ofl in the
regionp<u,2p. Any coarse graining of the action on th
scale of\ will essentially remove all structure there, whi
all the relevant information is already contained in the oth
half of angle space.
8-22
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The redundancy can be removed by an evaluation of
angle integral in Eq.~E1!, more appropriate to the cylindrica
phase space, restricting the integration to a single periodu
@58#. The choice of the limits of integration is then dete
mined by the requirement that the Wigner function be r
valued. It leads to the modified definition

W~p,u!5
1

2p\E2p

p

du8 e2 ipu8/\c* S u2
u8

2 DcS u1
u8

2 D .

~E5!
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The Wigner function now has support only at physical valu
of p,

W~p,u!5 (
l 52`

`

Wl~u!d~p22p\ l !, ~E6!

where

Wl~u!5 (
l 852`

`

eil 8uRl ,l 8 , ~E7!
Rl ,l 85H c̃ l 2 l 8/2
* c̃ l 1 l 8/2 , l even,

1

p (
l 952`

`
~21! l 9

l 911/2
c̃ l 2 l 8/22( l 911/2)

* c̃ l 1 l 8/22( l 911/2) , l odd.
~E8!
l
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The removal of the spurious, half-integer values of the act
and the rescaling of the relevant part of phase space h
been achieved at the expense of an additional summatio
the direction of the main diagonal of the (l ,l 8) lattice.

Another situation frequently encountered in the quant
mechanics of classically chaotic systems requires to de
Wigner functions on a torus: the quantization of maps of
square with periodic boundary conditions, for example,
baker @59,60# or the cat map@61#. Here, the periodicity of
each variable entails the discretization of the eigenvalue
the other, canonically conjugate one. A second, more pra
cal application is the numerical treatment of spatially e
tended systems, using alternately a box with equidistant,
crete positions in configuration space and plane waves
periodic boundary conditions in this box for representati
Independently of applications, discrete phase spaces
also be considered a laboratory of quantum dynamics in
own right @62#.

Specifically, we require periodicity in position,c(x1L)
5c(x) and in momentum,c̃(p1M )5c̃(p). This implies,
respectively, discretization of momentumpl52p\ l /L and
positionxm52p\m/M . Assuming the entire phase space
sizeLM to accomodateN Planck cells, the quantization con
dition

LM52pN\ ~E9!

restricts the quantum of action to the discrete values\
5LM /(2pN). If we place the origin in the center of th
(x,p) ‘‘unit cell,’’ we find as admissible values of positio
and momentum, pl5 lM /N and xm5mL/N, l ,m
52N/2, . . . ,N/221, respectively. The two correspondin
bases$u l &%, $um&% then obey the relations

^ l um&5
1

AN
expS 22p i

lm

N D , ~E10!
n
ve
in

e
e
e

of
ti-
-
s-
th
.
ay
ts

f

^ l 8u l &5d ( l 82 l ) modN ^m8um&5d (m82m) modN ,
~E11!

wheredn modN is the N-periodic Kronecker delta. A usefu
property of this setup is that the transformation betwe
these two bases is identical to the discrete fast Fourier tr
formation as defined in most numerical libraries@63#.

In order to adapt the Wigner function to this doubly di
crete phase space, we start from the form~E5! found for
action-angle variables, substituting directlyp5\ l and re-
placing the limits of integration by the corresponding ran
of x,

Wl~x!5
1

2p\E2L/2

L/2

dx8 e22p i lx 8c* ~@x2x8/2# modL !

3c~@x1x8/2# modL !. ~E12!

Discretizingx as well leads to

Wl ,m5
1

2p\ (
m852N/2

N/221

expS 22p i
lm8

N D K m1
m8

2 Uc L
3 K cUm2

m8

2 L . ~E13!

Under the sum, we switch to the momentum representat

Wl ,m5
1

2p\N (
m8,l 8,l 952N/2

N/221

expS 2p i @ l 82 l 9#
m

ND
3expS 2p i F l 81 l 9

2
2 l G m8

N D ^ l 8uc&^cu l 9&,

~E14!

and transform the momentum indices,k5 l 81 l 9, 2N<k
,N21, andk85 l 82 l 9, 2N/2<k8,N/221,
8-23
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Wl ,m5
1

2p\N (
k52N

N21

(
k852N/2

N/221

expS 2p i
k8m

N D
3 (

m852N/2

N/221

expS 2p i F k

2
2 l G m8

N D K k1k8

2 Uc L
3K cUk2k8

2 L . ~E15!

The inverse transformation,l 85(k1k8)/2, l 95(k2k8)/2,
shows thatk andk8 must have the same parity in order th
l 8 and l 9 be integer, a consequence of switching to diago
coordinates in a square lattice.

If k andk8 are botheven, them8 summation in Eq.~E15!
reduces to a Kronecker delta that restrictsk, giving

Wl ,m
e 5

1

2p\ (
l 852N/2

even

N/221

expS 2p i
l 8m

N D K l 1
l 8

2 Uc L K cU l 2 l 8

2 L ,

~E16!

in complete analogy to Eq.~E8!. If they are bothodd, say
k52 j 11, the sum overm8 no longer leads to a solutio
local in k. The result, after removing the remaining asymm
try in the boundary terms, is@64#

(
m852N/2

N/221

expS 2p i F l 2 j 2
1

2G m8

N D5

sinS N21

N F l 2 j 2
1

2Gp D
sinS 1

N F l 2 j 2
1

2Gp D .

~E17!
A
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By another renaming of indices it can be cast in the form

Wl ,m
o 5

1

2p\ (
l 852N/2

odd

N/221

expS 2p i
l 8m

N D

3 (
l 95 l 2N/2

l 1N/221 sinS N21

N F l 91
1

2Gp D
sinS 1

N F l 91
1

2Gp D
3 K l 1

l 8

2
2S l 91

1

2D Uc L K cU l 2 l 8

2
2S l 91

1

2D L .

~E18!

This relation again shows a close similarity to the cor
sponding~odd-l ) result for a cylindrical phase space, cf. E
~E8!, i.e., there appears an additional summation paralle
the main diagonal of the momentum lattice, with an algeb
ically decaying kernel. In contrast to Eq.~E8!, however, here
the l 9 summation need not be truncated in a practical eva
ation since it runs only over a single period of the mome
tum lattice~continued periodically, if required!. In the limit
N→`, Eq. ~E8! is recovered.

By the symplectic symmetry of the construction, see E
~E11!, it is clear that an analogous derivation will yield e
pressions for the Wigner function in terms of the positio
representation stateŝmuc&, essentially identical to Eqs
~E16! and ~E18!. A generalization to nonpure states
readily achieved by replacinguc&^cu with the density opera-
tor.
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